Potential for large-scale carbon dioxide removal via enhanced rock weathering with croplands

Enhanced silicate rock weathering (ERW), deployable with croplands, has potential use for atmospheric carbon dioxide removal (CDR), which is now necessary to mitigate anthropogenic climate change. ERW also has possible co-benefits for improved food and soil security, and reduced ocean acidification. 

In this study, David J. Beerling and colleagues used an integrated performance modelling approach to make an initial techno-economic assessment for 2050, quantifying how CDR potential and costs vary among nations in relation to business-as-usual energy policies and policies consistent with limiting future warming to 2 degrees Celsius. China, India, the USA and Brazil have great potential to help achieve average global CDR goals of 0.5 to 2 gigatonnes of carbon dioxide per year with extraction costs of approximately US$80–180 per tonne of carbon dioxde. These goals and costs are robust, regardless of future energy policies. Deployment within existing croplands offers opportunities to align agriculture and climate policy. However, success will depend upon overcoming political and social inertia to develop regulatory and incentive frameworks. 

The authors discuss the challenges and opportunities of ERW deployment, including the potential for excess industrial silicate materials (basalt mine overburden, concrete, and iron and steel slag) to obviate the need for new mining, as well as uncertainties in soil weathering rates and land–ocean transfer of weathered products.

No comments:

Post a Comment

Powered by Blogger.

Search

Search

Categories

Trending Topics

planthro projects